

Introduction

Lahja

Warning

This is a very young project. It’s used and validated mainly by the Python Ethereum client
(Trinity) Lahja is alpha state software. Expect bugs.

Lahja is a generic multi process event bus implementation written in Python 3.6+ that enables
lightweight inter-process communication, based on non-blocking asyncio.

Goals

Lahja is tailored around one primary use case: Enabling event-based communication between different
processes in moder Python applications using non-blocking asyncio.

Features:

	Non-blocking APIs based on asyncio

	Broadcast events within a single process or across multiple processes.

	Multiple APIs to consume events that adapt to different use cases and styles

	lightweight and simple (e.g. no IPC pipe management etc)

	Easy event routing (e.g. route specific events to specific processes or process groups)

Further reading

Here are a couple more useful links to check out.

	Source Code on GitHub [https://github.com/ethereum/lahja]

	Examples [https://github.com/ethereum/lahja/tree/master/examples]

Table of contents

General

	Introduction

	Quickstart

	Running the examples

	API

	Release Notes

Community

	Contributing

	Code of Conduct

Introduction

Lahja

Warning

This is a very young project. It’s used and validated mainly by the Python Ethereum client
(Trinity) Lahja is alpha state software. Expect bugs.

Lahja is a generic multi process event bus implementation written in Python 3.6+ that enables
lightweight inter-process communication, based on non-blocking asyncio.

Goals

Lahja is tailored around one primary use case: Enabling event-based communication between different
processes in moder Python applications using non-blocking asyncio.

Features:

	Non-blocking APIs based on asyncio

	Broadcast events within a single process or across multiple processes.

	Multiple APIs to consume events that adapt to different use cases and styles

	lightweight and simple (e.g. no IPC pipe management etc)

	Easy event routing (e.g. route specific events to specific processes or process groups)

Further reading

Here are a couple more useful links to check out.

	Source Code on GitHub [https://github.com/ethereum/lahja]

	Examples [https://github.com/ethereum/lahja/tree/master/examples]

Quickstart

Install the library

pip install lahja

Import Endpoint and BaseEvent

import asyncio
import logging
import multiprocessing

from lahja import BaseEvent, AsyncioEndpoint, ConnectionConfig

Setup application specific events

class BaseExampleEvent(BaseEvent):
 def __init__(self, payload):
 super().__init__()
 self.payload = payload

class FirstThingHappened(BaseExampleEvent):
 pass

class SecondThingHappened(BaseExampleEvent):
 pass

Setup first process to receive and broadcast events

def run_proc1():
 setup_logging()
 loop = asyncio.get_event_loop()
 loop.run_until_complete(proc1_worker())

async def proc1_worker():
 async with AsyncioEndpoint.serve(ConnectionConfig.from_name("e1")) as server:
 server.subscribe(
 SecondThingHappened,
 lambda event: logging.info(
 "Received via SUBSCRIBE API in proc1: %s", event.payload
),
)
 await server.wait_until_any_endpoint_subscribed_to(FirstThingHappened)

 while True:
 logging.info("Hello from proc1")
 await server.broadcast(FirstThingHappened("Hit from proc1"))
 await asyncio.sleep(2)

Setup second process to receive and broadcast events

def run_proc2():
 setup_logging()
 loop = asyncio.get_event_loop()
 loop.run_until_complete(proc2_worker())

async def proc2_worker():
 config = ConnectionConfig.from_name("e1")
 async with AsyncioEndpoint("e2").run() as client:
 await client.connect_to_endpoints(config)
 asyncio.ensure_future(display_proc1_events(client))
 client.subscribe(
 FirstThingHappened,
 lambda event: logging.info(
 "Received via SUBSCRIBE API in proc2: %s", event.payload
),
)
 await client.wait_until_any_endpoint_subscribed_to(SecondThingHappened)

 while True:
 logging.info("Hello from proc2")
 await client.broadcast(SecondThingHappened("Hit from proc2 "))
 await asyncio.sleep(2)

Start both processes

 p1 = multiprocessing.Process(target=run_proc1)
 p1.start()

 p2 = multiprocessing.Process(target=run_proc2)
 p2.start()
 p1.join()
 p2.join()

Running the examples

Example: Chatter between two processes

python examples/inter_process_ping_pong.py

The output will look like this:

INFO 05-29 11:31:45 Hello from proc2
INFO 05-29 11:31:45 Hello from proc1
INFO 05-29 11:31:45 Received via SUBSCRIBE API in proc2: Hit from proc1
INFO 05-29 11:31:45 Received via STREAM API in proc2: Hit from proc1
INFO 05-29 11:31:46 Hello from proc2
INFO 05-29 11:31:46 Received via SUBSCRIBE API in proc1: Hit from proc2
INFO 05-29 11:31:46 Hello from proc1
INFO 05-29 11:31:47 Hello from proc2
INFO 05-29 11:31:47 Hello from proc1
INFO 05-29 11:31:48 Hello from proc2
INFO 05-29 11:31:48 Received via SUBSCRIBE API in proc1: Hit from proc2
INFO 05-29 11:31:48 Hello from proc1
INFO 05-29 11:31:49 Hello from proc2
INFO 05-29 11:31:49 Hello from proc1
INFO 05-29 11:31:50 Hello from proc2
INFO 05-29 11:31:50 Received via SUBSCRIBE API in proc1: Hit from proc2
INFO 05-29 11:31:50 Hello from proc1
INFO 05-29 11:31:50 Received via SUBSCRIBE API in proc2: Hit from proc1
INFO 05-29 11:31:50 Received via STREAM API in proc2: Hit from proc1
INFO 05-29 11:31:51 Hello from proc2
INFO 05-29 11:31:51 Hello from proc1

Example: Request API

python examples/request_api.py

The output will look like this:

Requesting
Got answer: Yay
Requesting
Got answer: Yay
Requesting
Got answer: Yay

API

This section aims to provide a detailed description of all APIs. For hands-on examples, check out the Quickstart.

Warning

We expect each alpha release to have breaking changes to the API.

	Endpoint
	Base Endpoint API

	AsyncioEndpoint

	TrioEndpoint

	Common
	ConnectionConfig

	BaseEvent

	BaseRequestResponseEvent

	BroadcastConfig

	Subscription

	Exceptions

	Testing
	Runner

	Engines

	Drivers
	Initializers

	Actions

	Examples

Endpoint

Base Endpoint API

	
class lahja.base.EndpointAPI

	Bases: abc.ABC [https://docs.python.org/3.6/library/abc.html#abc.ABC]

The Endpoint enables communication between different processes
as well as within a single process via various event-driven APIs.

	
are_all_endpoints_subscribed_to(event_type: Type[lahja.common.BaseEvent]) → bool

	Return True if every connected remote endpoint is subscribed to the specified event
type from this endpoint. Otherwise return False.

	
broadcast(item: lahja.common.BaseEvent, config: Optional[lahja.common.BroadcastConfig] = None) → None

	Broadcast an instance of BaseEvent on the event bus. Takes
an optional second parameter of BroadcastConfig to decide
where this event should be broadcasted to. By default, events are broadcasted across
all connected endpoints with their consuming call sites.

	
broadcast_nowait(item: lahja.common.BaseEvent, config: Optional[lahja.common.BroadcastConfig] = None) → None

	A sync compatible version of broadcast()

Warning

Heavy use of broadcast_nowait() in
contiguous blocks of code without yielding to the async
implementation should be expected to cause problems.

	
connect_to_endpoints(*endpoints) → None

	Establish connections to the given endpoints.

	
get_connected_endpoints_and_subscriptions() → Tuple[Tuple[str, Set[Type[lahja.common.BaseEvent]]], ...]

	Return 2-tuples for all all connected endpoints containing the name of
the endpoint coupled with the set of messages the endpoint subscribes
to

	
get_subscribed_events() → Set[Type[lahja.common.BaseEvent]]

	Return the set of event types this endpoint subscribes to.

	
is_any_endpoint_subscribed_to(event_type: Type[lahja.common.BaseEvent]) → bool

	Return True if at least one of the connected remote endpoints is subscribed to the
specified event type from this endpoint. Otherwise return False.

	
is_connected_to(endpoint_name: str) → bool

	Return whether this endpoint is connected to another endpoint with the given name.

	
is_endpoint_subscribed_to(remote_endpoint: str, event_type: Type[lahja.common.BaseEvent]) → bool

	Return True if the specified remote endpoint is subscribed to the specified event type
from this endpoint. Otherwise return False.

	
request(item: lahja.common.BaseRequestResponseEvent[TResponse], config: Optional[lahja.common.BroadcastConfig] = None) → TResponse

	Broadcast an instance of
BaseRequestResponseEvent on the event bus and
immediately wait on an expected answer of type
BaseEvent. Optionally pass a second parameter of
BroadcastConfig to decide where the request
should be broadcasted to. By default, requests are broadcasted across
all connected endpoints with their consuming call sites.

	
run() → AsyncContextManager[lahja.base.EndpointAPI]

	Context manager API for running endpoints.

async with endpoint.run() as endpoint:
 ... # endpoint running within context
... # endpoint stopped after

	
classmethod serve(config: lahja.common.ConnectionConfig) → AsyncContextManager[lahja.base.EndpointAPI]

	Context manager API for running and endpoint server.

async with EndpointClass.serve(config):
 ... # server running within context
... # server stopped

	
stream(event_type: Type[TStreamEvent], num_events: Optional[int] = None) → AsyncGenerator[TStreamEvent, None]

	Stream all events that match the specified event type. This returns an
AsyncIterable[BaseEvent] which can be consumed through an async for loop.
An optional num_events parameter can be passed to stop streaming after a maximum amount
of events was received.

	
subscribe(event_type: Type[TSubscribeEvent], handler: Callable[TSubscribeEvent, Union[Any, Awaitable[Any]]]) → lahja.common.Subscription

	Subscribe to receive updates for any event that matches the specified event type.
A handler is passed as a second argument an Subscription is returned
to unsubscribe from the event if needed.

	
wait_for(event_type: Type[TWaitForEvent]) → TWaitForEvent

	Wait for a single instance of an event that matches the specified event type.

	
wait_until_all_endpoints_subscribed_to(event: Type[lahja.common.BaseEvent], *, include_self: bool = True) → None

	Block until all currently connected remote endpoints are subscribed to the specified
event type from this endpoint.

	
wait_until_any_endpoint_subscribed_to(event: Type[lahja.common.BaseEvent]) → None

	Block until any other remote endpoint has subscribed to the specified event type
from this endpoint.

	
wait_until_connected_to(endpoint_name: str) → None

	Return once a connection exists to an endpoint with the given name.

	
wait_until_connections_change() → None

	Block until the set of connected remote endpoints changes.

	
wait_until_endpoint_subscribed_to(remote_endpoint: str, event: Type[lahja.common.BaseEvent]) → None

	Block until the specified remote endpoint has subscribed to the specified event type
from this endpoint.

	
wait_until_endpoint_subscriptions_change() → None

	Block until any subscription change occurs on any remote endpoint or
the set of remote endpoints changes

	
is_running

	

	
is_serving

	

	
name

	

	
class lahja.base.BaseEndpoint(name: str)

	Bases: lahja.base.EndpointAPI

Base class for endpoint implementations that implements shared/common logic

	
are_all_endpoints_subscribed_to(event_type: Type[lahja.common.BaseEvent], include_self: bool = True) → bool

	Return True if every connected remote endpoint is subscribed to the specified event
type from this endpoint. Otherwise return False.

	
get_connected_endpoints_and_subscriptions() → Tuple[Tuple[str, Set[Type[lahja.common.BaseEvent]]], ...]

	Return all connected endpoints and their event type subscriptions to this endpoint.

	
is_any_endpoint_subscribed_to(event_type: Type[lahja.common.BaseEvent]) → bool

	Return True if at least one of the connected remote endpoints is subscribed to the
specified event type from this endpoint. Otherwise return False.

	
is_connected_to(endpoint_name: str) → bool

	Return whether this endpoint is connected to another endpoint with the given name.

	
is_endpoint_subscribed_to(remote_endpoint: str, event_type: Type[lahja.common.BaseEvent]) → bool

	Return True if the specified remote endpoint is subscribed to the specified event type
from this endpoint. Otherwise return False.

	
wait_for(event_type: Type[TWaitForEvent]) → TWaitForEvent

	Wait for a single instance of an event that matches the specified event type.

	
wait_until_all_endpoints_subscribed_to(event: Type[lahja.common.BaseEvent], *, include_self: bool = True) → None

	Block until all currently connected remote endpoints are subscribed to the specified
event type from this endpoint.

	
wait_until_any_endpoint_subscribed_to(event: Type[lahja.common.BaseEvent]) → None

	Block until any other remote endpoint has subscribed to the specified event type
from this endpoint.

	
wait_until_connected_to(endpoint_name: str) → None

	Return once a connection exists to an endpoint with the given name.

	
wait_until_connections_change() → None

	Block until the set of connected remote endpoints changes.

	
wait_until_endpoint_subscribed_to(remote_endpoint: str, event: Type[lahja.common.BaseEvent]) → None

	Block until the specified remote endpoint has subscribed to the specified event type
from this endpoint.

	
wait_until_endpoint_subscriptions_change() → None

	Block until any subscription change occurs on any remote endpoint or
the set of remote endpoints changes

	
has_snappy_support = False

	

	
logger = <Logger lahja.endpoint.Endpoint (WARNING)>

	

AsyncioEndpoint

	
class lahja.asyncio.endpoint.AsyncioEndpoint(name: str)

	Bases: lahja.base.BaseEndpoint

The AsyncioEndpoint enables communication
between different processes as well as within a single process via various
event-driven APIs.

	
broadcast(item: lahja.common.BaseEvent, config: Optional[lahja.common.BroadcastConfig] = None) → None

	Broadcast an instance of BaseEvent on the event bus. Takes
an optional second parameter of BroadcastConfig to decide
where this event should be broadcasted to. By default, events are broadcasted across
all connected endpoints with their consuming call sites.

	
broadcast_nowait(item: lahja.common.BaseEvent, config: Optional[lahja.common.BroadcastConfig] = None) → None

	A non-async broadcast() (see broadcast()
for more)

Instead of blocking the calling coroutine this function schedules the broadcast
and immediately returns.

CAUTION: You probably don’t want to use this. broadcast() doesn’t return until the
write socket has finished draining, meaning that the OS has accepted the message.
This prevents us from sending more data than the remote process can handle.
broadcast_nowait has no such backpressure. Even after the remote process stops
accepting new messages this function will continue to accept them, which in the
worst case could lead to runaway memory usage.

	
check_event_loop() → TFunc

	All Endpoint methods must be called from the same event loop.

	
connect_to_endpoints(*endpoints) → None

	Connect to the given endpoints and await until all connections are established.

	
get_subscribed_events() → Set[Type[lahja.common.BaseEvent]]

	Return the set of events this Endpoint is currently listening for

	
request(item: lahja.common.BaseRequestResponseEvent[TResponse], config: Optional[lahja.common.BroadcastConfig] = None) → TResponse

	Broadcast an instance of
BaseRequestResponseEvent on the event bus and
immediately wait on an expected answer of type
BaseEvent. Optionally pass a second parameter of
BroadcastConfig to decide where the request
should be broadcasted to. By default, requests are broadcasted across
all connected endpoints with their consuming call sites.

	
run() → AsyncIterator[lahja.base.EndpointAPI]

	Context manager API for running endpoints.

async with endpoint.run() as endpoint:
 ... # endpoint running within context
... # endpoint stopped after

	
classmethod serve(config: lahja.common.ConnectionConfig) → AsyncIterator[AsyncioEndpoint]

	Context manager API for running and endpoint server.

async with EndpointClass.serve(config):
 ... # server running within context
... # server stopped

	
stream(event_type: Type[TStreamEvent], num_events: Optional[int] = None) → AsyncGenerator[TStreamEvent, None]

	Stream all events that match the specified event type. This returns an
AsyncIterable[BaseEvent] which can be consumed through an async for loop.
An optional num_events parameter can be passed to stop streaming after a maximum amount
of events was received.

	
subscribe(event_type: Type[TSubscribeEvent], handler: Callable[TSubscribeEvent, Union[Any, Awaitable[Any]]]) → lahja.common.Subscription

	Subscribe to receive updates for any event that matches the specified event type.
A handler is passed as a second argument an Subscription is returned
to unsubscribe from the event if needed.

	
event_loop

	

	
ipc_path

	

	
is_running

	

	
is_serving

	

TrioEndpoint

	
class lahja.trio.endpoint.TrioEndpoint(name: str)

	Bases: lahja.base.BaseEndpoint

	
broadcast(item: lahja.common.BaseEvent, config: Optional[lahja.common.BroadcastConfig] = None) → None

	Broadcast an instance of BaseEvent on the event bus. Takes
an optional second parameter of BroadcastConfig to decide
where this event should be broadcasted to. By default, events are broadcasted across
all connected endpoints with their consuming call sites.

	
broadcast_nowait(item: lahja.common.BaseEvent, config: Optional[lahja.common.BroadcastConfig] = None) → None

	A sync compatible version of broadcast()

Warning

Heavy use of broadcast_nowait() in
contiguous blocks of code without yielding to the async
implementation should be expected to cause problems.

	
connect_to_endpoints(*endpoints) → None

	Connect to the given endpoints and await until all connections are established.

	
get_subscribed_events() → Set[Type[lahja.common.BaseEvent]]

	Return the set of events this Endpoint is currently listening for

	
request(item: lahja.common.BaseRequestResponseEvent[TResponse], config: Optional[lahja.common.BroadcastConfig] = None) → TResponse

	Broadcast an instance of
BaseRequestResponseEvent on the event bus and
immediately wait on an expected answer of type
BaseEvent. Optionally pass a second parameter of
BroadcastConfig to decide where the request
should be broadcasted to. By default, requests are broadcasted across
all connected endpoints with their consuming call sites.

	
run() → AsyncGenerator[lahja.base.EndpointAPI, None]

	Context manager API for running endpoints.

async with endpoint.run() as endpoint:
 ... # endpoint running within context
... # endpoint stopped after

	
classmethod serve(config: lahja.common.ConnectionConfig) → AsyncIterator[TrioEndpoint]

	Context manager API for running and endpoint server.

async with EndpointClass.serve(config):
 ... # server running within context
... # server stopped

	
stream(event_type: Type[TStreamEvent], num_events: Optional[int] = None) → AsyncGenerator[TStreamEvent, None]

	Stream all events that match the specified event type. This returns an
AsyncIterable[BaseEvent] which can be consumed through an async for loop.
An optional num_events parameter can be passed to stop streaming after a maximum amount
of events was received.

	
subscribe(event_type: Type[TSubscribeEvent], handler: Callable[TSubscribeEvent, Union[Any, Awaitable[Any]]]) → lahja.common.Subscription

	Subscribe to receive updates for any event that matches the specified event type.
A handler is passed as a second argument an Subscription is returned
to unsubscribe from the event if needed.

	
wait_started() → None

	

	
wait_stopped() → None

	

	
TResponse = ~TResponse

	

	
TStreamEvent = ~TStreamEvent

	

	
TSubscribeEvent = ~TSubscribeEvent

	

	
is_running

	

	
is_server_stopped

	

	
is_serving

	

	
is_stopped

	

	
logger = <Logger lahja.trio.TrioEndpoint (WARNING)>

	

Common

ConnectionConfig

	
class lahja.common.ConnectionConfig

	Bases: tuple [https://docs.python.org/3.6/library/stdtypes.html#tuple]

Configuration class needed to establish Endpoint connections.

	
classmethod from_name(name: str, base_path: Optional[pathlib.Path] = None) → lahja.common.ConnectionConfig

	

	
name

	Alias for field number 0

	
path

	Alias for field number 1

BaseEvent

	
class lahja.common.BaseEvent

	Bases: object [https://docs.python.org/3.6/library/functions.html#object]

	
bind(endpoint: EndpointAPI, id: Optional[NewType.<locals>.new_type]) → None

	

	
broadcast_config(internal: bool = False) → lahja.common.BroadcastConfig

	

	
get_origin() → str

	

	
is_bound = False

	

BaseRequestResponseEvent

	
class lahja.common.BaseRequestResponseEvent

	Bases: abc.ABC [https://docs.python.org/3.6/library/abc.html#abc.ABC], lahja.common.BaseEvent, typing.Generic [https://docs.python.org/3.6/library/typing.html#typing.Generic]

	
static expected_response_type() → Type[TResponse]

	Return the type that is expected to be send back for this request.
This ensures that at runtime, only expected responses can be send
back to callsites that issued a BaseRequestResponseEvent

BroadcastConfig

	
class lahja.common.BroadcastConfig(filter_endpoint: Optional[str] = None, filter_event_id: Optional[NewType.<locals>.new_type] = None, internal: bool = False)

	Bases: object [https://docs.python.org/3.6/library/functions.html#object]

	
allowed_to_receive(endpoint: str) → bool

	

Subscription

	
class lahja.common.Subscription(unsubscribe_fn: Callable[Any])

	Bases: object [https://docs.python.org/3.6/library/functions.html#object]

	
unsubscribe() → None

	

Exceptions

	
exception lahja.exceptions.BindError

	Bases: lahja.exceptions.LahjaError

Raise when an attempt was made to bind an event that is already bound.

	
exception lahja.exceptions.ConnectionAttemptRejected

	Bases: lahja.exceptions.LahjaError

Raised when an attempt was made to connect to an endpoint that is already connected.

	
exception lahja.exceptions.LahjaError

	Bases: Exception [https://docs.python.org/3.6/library/exceptions.html#Exception]

Base class for all lahja errors

	
exception lahja.exceptions.LifecycleError

	Bases: lahja.exceptions.LahjaError

Raised when attempting to violate the lifecycle of an endpoint such as
starting an already started endpoint or starting an endpoint that has
already stopped.

	
exception lahja.exceptions.RemoteDisconnected

	Bases: lahja.exceptions.LahjaError

Raise when a remote disconnects while we attempting to read a message.

	
exception lahja.exceptions.UnexpectedResponse

	Bases: lahja.exceptions.LahjaError

Raised when the type of a response did not match the expected_response_type.

Testing

Warning

This API is experimental and subject to breaking changes.

Tests for the lahja library can be written using the
Runner/Engine/Driver APIs. These allow for constructing reusable
declarative tests against endpoints which can be run against different endpoint
implementations as well as different configurations of endpoints.

Runner

Runners are in charge of the outermost execution layer. A Runner must
be a callable which accepts *args where each argument is a Driver.

	
class lahja.tools.runner.RunnerAPI

	Bases: abc.ABC [https://docs.python.org/3.6/library/abc.html#abc.ABC]

Engines

Engines are in charge of abstracting away how each individual endpoint
implementation should be run. An Engine must implement the following
API.

	
class lahja.tools.engine.EngineAPI

	Bases: abc.ABC [https://docs.python.org/3.6/library/abc.html#abc.ABC]

	
run_drivers(*drivers) → Awaitable[None]

	Performs the actual running of the drivers executing them with in a
manner appropriate for the individual endpoint implementation.

	
run_with_timeout(coro: Callable[..., Awaitable[Any]], *args, timeout: int) → None

	Runs a coroutine with the specifid positional args with a timeout.
must raise the built-in TimeoutError when a timeout occurs.

	
sleep(seconds: float) → None

	Sleep for the provide number of seconds in a manner appropriate for the
individual endpoint implementation.

Drivers

Drivers are a declarative set of instructions for instrumenting the actions and
lifecycle of an endpoint. A driver must be a coroutine which takes an
Engine as a single argument and performs the actions declared by the driver.

Drivers should be constructed in a functional maner using the utilities
provided under lahja.tools.drivers.

A driver is composed of a single Initializer followed by a variadic number of Actions.

	
lahja.tools.drivers.driver.driver(initializer: lahja.tools.drivers.initializers.Initializer, *actions) → Callable[lahja.tools.engine.EngineAPI, Awaitable[None]]

	Construct a Driver. Should contain a single Initializer followed by a
variadic number of Actions.

Initializers

	
lahja.tools.drivers.initializers.serve_endpoint(config: lahja.common.ConnectionConfig) → lahja.tools.drivers.initializers.Initializer

	

	
lahja.tools.drivers.initializers.run_endpoint(name: str) → lahja.tools.drivers.initializers.Initializer

	

Actions

	
lahja.tools.drivers.actions.broadcast(event: lahja.common.BaseEvent, config: Optional[lahja.common.BroadcastConfig] = None) → lahja.tools.drivers.actions.AsyncAction

	See EndpointAPI.broadcast

	
lahja.tools.drivers.actions.connect_to_endpoints(*configs) → lahja.tools.drivers.actions.AsyncAction

	See EndpointAPI.connect_to_endpoints

	
lahja.tools.drivers.actions.throws(action: Union[lahja.tools.drivers.actions.SyncAction, lahja.tools.drivers.actions.AsyncAction], exc_type: Type[Exception]) → Union[lahja.tools.drivers.actions.SyncAction, lahja.tools.drivers.actions.AsyncAction]

	Checks that the provided Action throws the provided exception type.

	
lahja.tools.drivers.actions.wait_for(event_type: Type[lahja.common.BaseEvent], on_event: Optional[Callable[[lahja.base.EndpointAPI, lahja.common.BaseEvent], Any]] = None) → lahja.tools.drivers.actions.AsyncAction

	Wait for an event of the provided request_type and call
response event returned by the provide get_response function.

	
lahja.tools.drivers.actions.wait_until_any_endpoint_subscribed_to(event_type: Type[lahja.common.BaseEvent]) → lahja.tools.drivers.actions.AsyncAction

	See EndpointAPI.wait_until_any_endpoint_subscribed_to

	
lahja.tools.drivers.actions.wait_until_connected_to(name: str) → lahja.tools.drivers.actions.AsyncAction

	See EndpointAPI.wait_until_connected_to

	
lahja.tools.drivers.actions.wait_any_then_broadcast(event: lahja.common.BaseEvent, config: Optional[lahja.common.BroadcastConfig] = None) → lahja.tools.drivers.actions.AsyncAction

	Combination of wait_until_any_endpoint_subscribed_to and broadcast

	
lahja.tools.drivers.actions.serve_request(request_type: Type[lahja.common.BaseRequestResponseEvent[lahja.common.BaseEvent]], get_response: Callable[[lahja.base.EndpointAPI, lahja.common.BaseRequestResponseEvent[lahja.common.BaseEvent]], lahja.common.BaseEvent]) → lahja.tools.drivers.actions.AsyncAction

	Wait for an event of the provided request_type and respond using the
response event returned by the provide get_response function.

	
lahja.tools.drivers.actions.request(event: lahja.common.BaseRequestResponseEvent[lahja.common.BaseEvent], config: Optional[lahja.common.BroadcastConfig] = None, on_response: Optional[Callable[[lahja.base.EndpointAPI, lahja.common.BaseEvent], Any]] = None) → lahja.tools.drivers.actions.AsyncAction

	See EndpointAPI.connect_to_endpoints

Optionally provide a callback on_response that will be run upon receipt
of the response.

	
lahja.tools.drivers.actions.checkpoint(name: str) → Tuple[lahja.tools.drivers.actions.AsyncAction, lahja.tools.drivers.actions.AsyncAction]

	Generates a pair of actions that can be used in separate drivers to
synchronize their action execution. Each driver will wait until this
checkpoint has been hit before proceeding.

Examples

Driver to run an endpoint as a server and wait for a client to connect.

from lahja.tools import drivers as d

server_driver = d.driver(
 d.serve_endpoint(ConnectionConfig(...)),
 d.wait_until_connected_to('client'),
)

Driver to run a client and connect to a server.

from lahja.tools import drivers as d

server_config = ConnectionConfig(...)
client_driver = d.driver(
 d.run_endpoint(ConnectionConfig(...)),
 d.connect_to_endpoints(server_config),
)

We could then run these together against the trio implementation of the
endpoint like this.

from lahja.tools.runners import TrioRunner

client_driver = ...
server_driver = ...
runner = TrioRunner()
runner(client_driver, server_driver)

Release Notes

Lahja 0.15.2 (2019-12-04)

Bugfixes

	A couple fixes to TrioEndpoint

	allow more than one pending incoming connection, and use a class
attribute to configure that instead of hard-coding

	wait for the socket to be bound in _start_serving() so that others
don’t try to connect too soon (#170 [https://github.com/ethereum/lahja/issues/170])

Lahja 0.15.1 (2019-12-03)

Bugfixes

	Use a synchronous API to unlink the IPC file when a TrioEndpoint finishes

It was using trio’s async unlink() method, which would do nothing if the current context is
already cancelled (e.g. when the user hits Ctrl-C), which is not what we want. (#165 [https://github.com/ethereum/lahja/issues/165])

Lahja 0.15.0 (2019-11-21)

No significant changes.

Lahja 0.14.6 (2019-11-19)

Features

	Ensure stream() does not suppress CancelledError (#156 [https://github.com/ethereum/lahja/issues/156])

	Use the highest available pickle protocol. This yields a notable performance
improvement on Python < 3.8 which are still using version 3 of the protocol by
default. (#160 [https://github.com/ethereum/lahja/issues/160])

Misc

	#163 [https://github.com/ethereum/lahja/issues/163]

Lahja 0.14.5 (2019-09-10)

Features

	Ensure stream() does not suppress CancelledError (#156 [https://github.com/ethereum/lahja/issues/156])

Bugfixes

	Fix that ensures asyncio streams are closed when an endpoint shuts down to prevent ResourceWarning warnings. (#157 [https://github.com/ethereum/lahja/issues/157])

Lahja 0.14.4 (2019-09-05)

No significant changes.

Lahja 0.14.3 (2019-08-28)

Improved Documentation

	Fix broken RTD build by re-adding some info that is important for the latex job. (#155 [https://github.com/ethereum/lahja/issues/155])

Lahja 0.14.2 (2019-08-28)

Bugfixes

	Raise ENDPOINT_CONNECT_TIMEOUT to 30 seconds to be more conservative about
app specific expectations on the maximum time it could take for endpoints to become
available upon connection attempts. (#154 [https://github.com/ethereum/lahja/issues/154])

Lahja 0.14.1 (2019-08-13)

Features

	Add a TrioEndpoint as a trio based alternative to the AsyncioEndpoint. It can seamlessly operate with other endpoints both trio or asyncio based. (#126 [https://github.com/ethereum/lahja/issues/126])

	Convert run mechanism for RemoteEndpoint to be async context manager based. (#131 [https://github.com/ethereum/lahja/issues/131])

Bugfixes

	Use the proper ConnectionAttemptRejected class in a code path that used
a generic Exception before. (#128 [https://github.com/ethereum/lahja/issues/128])

	If for some reason the IPC file is missing during server shutdown,
suppress the FileNotFoundError that is raised when we try to remove it. (#144 [https://github.com/ethereum/lahja/issues/144])

	Ensure cancellation of asyncio tasks is properly handled. (#145 [https://github.com/ethereum/lahja/issues/145])

	Fixed some syntax issues in the API docs that prevented them from building.
Ensured the CI docs build catches these issues in the future. (#147 [https://github.com/ethereum/lahja/issues/147])

Improved Documentation

	Setup towncrier to generate release notes from fragment files to ensure a higher standard
for release notes. (#147 [https://github.com/ethereum/lahja/issues/147])

	Fix wrong title in docs as well as wrong info in license. (#150 [https://github.com/ethereum/lahja/issues/150])

	Rearrange the table of contents and move “Testing” under the API section. (#151 [https://github.com/ethereum/lahja/issues/151])

	Remove visual clutter from API docs
Group methods and attributes in API docs (#152 [https://github.com/ethereum/lahja/issues/152])

Deprecations and Removals

	Remove connect_to_endpoint and connect_to_endpoints_nowait APIs. (#137 [https://github.com/ethereum/lahja/issues/137])

v0.14.0

	Feature: Rename subscription wait APIs and ensure they also work well with local subscriptions

v0.13.0

	Feature: Implement a standard API for endpoints to support non-asyncio based implementations (e.g. Trio)

	Feature: Improve flexibility of the APIs that allow waiting on subscriptions

	Bugfix: Get rid of warnings on shutdown

	Bugfix: Repair broken examples and add a CI job to ensure they don’t break again

	Performance: Don’t send events to endpoints that aren’t subscribed to the specific event

	Performance: Reduce number of socket sends by precombinging length prefix

	Performance: Many small performance improvements in various code paths

	Performance: Use a faster request id implementation instead of using an uuid

v0.12.0

	Change IPC backend from multiprocessing to asyncio

	Endpoint.broadcast() is now async

	Endpoint.broadcast_nowait() now exists, it schedules the message to be broadcast

	Endpoint.start_serving_nowait() no longer exists

	Endpoint.connect_to_endpoints_blocking() no longer exists

	Endpoint.stop() must be called or else some coroutines will be orphaned

	Endpoint can only be used from one event loop. It will remember the current event loop
when an async method is first called, and throw an exception if another of its async
methods is called from a different event loop.

	Messages will be compressed if python-snappy is installed

	Lahja previously silently dropped some exceptions, they are now propogated up

v0.11.2

	Properly set up logger

v0.11.1

	Turn exception that would be raised in a background task into a warning

v0.11.0

	Performance: Connect endpoints directly without central coordinator (BREAKING CHANGE)

v0.10.2

	Fix issue that can crash Endpoint

v0.10.1

	Fix issue that can crash Endpoint

v0.10.0

	Make request API accept a BroadcastConfig

	Add benchmarks

v0.9.0

	Implement “internal events”

	Rename max to num_events

	Ensure Futures are created on the correct event loop

	Ensure all consuming APIs handle cancellations well

	Don’t try to propagate events after shutdown

Contributing

Thank you for your interest in contributing! We welcome all contributions no matter their size. Please read along to learn how to get started. If you get stuck, feel free to reach for help in our Gitter channel [https://gitter.im/ethereum/py-evm].

Setting the stage

Clone the Lahja repository

$ git clone --recursive https://github.com/ethereum/lahja.git

Optional: Often, the best way to guarantee a clean Python 3 environment is with
virtualenv [https://virtualenv.pypa.io/en/stable/]. If we don’t have virtualenv installed
already, we first need to install it via pip.

pip install virtualenv

Then, we can initialize a new virtual environment venv, like:

virtualenv -p python3 venv

This creates a new directory venv where packages are installed isolated from any other global
packages.

To activate the virtual directory we have to source it

. venv/bin/activate

After we have activated our virtual environment, installing all dependencies that are needed to run, develop and test all code in this repository is as easy as:

pip install -e .[dev]

Running the tests

A great way to explore the code base is to run the tests.

We can run all tests with:

pytest

Code Style

When multiple people are working on the same body of code, it is important that they write code that conforms to a similar style. It often doesn’t matter as much which style, but rather that they conform to one style.

To ensure your contribution conforms to the style being used in this project, we encourage you to read our style guide [https://github.com/pipermerriam/ethereum-dev-tactical-manual/blob/master/style-guide.md].

Type Hints

The code bases is transitioning to use type hints [https://www.python.org/dev/peps/pep-0484/]. Type hints make it easy to prevent certain types of bugs, enable richer tooling and enhance the documentation, making the code easier to follow.

All new code is required to land with type hints with the exception of test code that is not expected to use type hints.

All parameters as well as the return type of defs are expected to be typed with the exception of self and cls as seen in the following example.

def __init__(self, wrapped_db: BaseDB) -> None:
 self.wrapped_db = wrapped_db
 self.reset()

Documentation

Public APIs are expected to be annotated with docstrings as seen in the following example.

def add_transaction(self,
 transaction: BaseTransaction,
 computation: BaseComputation,
 block: BaseBlock) -> Tuple[Block, Dict[bytes, bytes]]:
 """
 Add a transaction to the given block and
 return `trie_data` to store the transaction data in chaindb in VM layer.

 Update the bloom_filter, transaction trie and receipt trie roots, bloom_filter,
 bloom, and used_gas of the block.

 :param transaction: the executed transaction
 :param computation: the Computation object with executed result
 :param block: the Block which the transaction is added in

 :return: the block and the trie_data
 """

Docstrings are written in reStructuredText and allow certain type of directives.

Notice that :param: and :return: directives are being used to describe parameters and return value. Usage of :type: and :rtype: directives on the other hand is discouraged as sphinx directly reads and displays the types from the source code type definitions making any further use of :type: and :rtype: obsolete and unnecessarily verbose.

Use imperative, present tense to describe APIs: “return” not “returns”

One way to test if you have it right is to complete the following sentence.

If you call this API it will: __________________________

Pull Requests

It’s a good idea to make pull requests early on. A pull request represents the
start of a discussion, and doesn’t necessarily need to be the final, finished
submission.

GitHub’s documentation for working on pull requests is available here [https://help.github.com/articles/about-pull-requests/].

Once you’ve made a pull request take a look at the Circle CI build status in the
GitHub interface and make sure all tests are passing. In general pull requests that do not pass the CI build yet won’t get reviewed unless explicitly requested.

Releasing

Pandoc is required for transforming the markdown README to the proper
format to render correctly on pypi.

For Debian-like systems:

apt install pandoc

Or on OSX:

brew install pandoc

To release a new version:

bumpversion $$VERSION_PART_TO_BUMP$$
git push && git push --tags
make release

How to bumpversion

The version format for this repo is {major}.{minor}.{patch} for
stable, and {major}.{minor}.{patch}-{stage}.{devnum} for unstable
(stage can be alpha or beta).

To issue the next version in line, use bumpversion and specify which
part to bump, like bumpversion minor or bumpversion devnum.

If you are in a beta version, bumpversion stage will switch to a
stable.

To issue an unstable version when the current version is stable, specify
the new version explicitly, like
bumpversion --new-version 4.0.0-alpha.1 devnum

Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience,
education, socio-economic status, nationality, personal appearance, race,
religion, or sexual identity and orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at piper@pipermerriam.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

 Python Module Index

 l

 		 	

 		
 l	

 	[image: -]
 	
 lahja	

 	
 	
 lahja.exceptions	

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | N
 | P
 | R
 | S
 | T
 | U
 | W

A

 	
 	allowed_to_receive() (lahja.common.BroadcastConfig method)

 	are_all_endpoints_subscribed_to() (lahja.base.BaseEndpoint method)

 	(lahja.base.EndpointAPI method)

 	
 	AsyncioEndpoint (class in lahja.asyncio.endpoint)

B

 	
 	BaseEndpoint (class in lahja.base)

 	BaseEvent (class in lahja.common)

 	BaseRequestResponseEvent (class in lahja.common)

 	bind() (lahja.common.BaseEvent method)

 	BindError

 	broadcast() (in module lahja.tools.drivers.actions)

 	(lahja.asyncio.endpoint.AsyncioEndpoint method)

 	(lahja.base.EndpointAPI method)

 	(lahja.trio.endpoint.TrioEndpoint method)

 	
 	broadcast_config() (lahja.common.BaseEvent method)

 	broadcast_nowait() (lahja.asyncio.endpoint.AsyncioEndpoint method)

 	(lahja.base.EndpointAPI method)

 	(lahja.trio.endpoint.TrioEndpoint method)

 	BroadcastConfig (class in lahja.common)

C

 	
 	check_event_loop() (lahja.asyncio.endpoint.AsyncioEndpoint method)

 	checkpoint() (in module lahja.tools.drivers.actions)

 	connect_to_endpoints() (in module lahja.tools.drivers.actions)

 	(lahja.asyncio.endpoint.AsyncioEndpoint method)

 	(lahja.base.EndpointAPI method)

 	(lahja.trio.endpoint.TrioEndpoint method)

 	
 	ConnectionAttemptRejected

 	ConnectionConfig (class in lahja.common)

D

 	
 	driver() (in module lahja.tools.drivers.driver)

E

 	
 	EndpointAPI (class in lahja.base)

 	EngineAPI (class in lahja.tools.engine)

 	
 	event_loop (lahja.asyncio.endpoint.AsyncioEndpoint attribute)

 	expected_response_type() (lahja.common.BaseRequestResponseEvent static method)

F

 	
 	from_name() (lahja.common.ConnectionConfig class method)

G

 	
 	get_connected_endpoints_and_subscriptions() (lahja.base.BaseEndpoint method)

 	(lahja.base.EndpointAPI method)

 	get_origin() (lahja.common.BaseEvent method)

 	
 	get_subscribed_events() (lahja.asyncio.endpoint.AsyncioEndpoint method)

 	(lahja.base.EndpointAPI method)

 	(lahja.trio.endpoint.TrioEndpoint method)

H

 	
 	has_snappy_support (lahja.base.BaseEndpoint attribute)

I

 	
 	ipc_path (lahja.asyncio.endpoint.AsyncioEndpoint attribute)

 	is_any_endpoint_subscribed_to() (lahja.base.BaseEndpoint method)

 	(lahja.base.EndpointAPI method)

 	is_bound (lahja.common.BaseEvent attribute)

 	is_connected_to() (lahja.base.BaseEndpoint method)

 	(lahja.base.EndpointAPI method)

 	is_endpoint_subscribed_to() (lahja.base.BaseEndpoint method)

 	(lahja.base.EndpointAPI method)

 	
 	is_running (lahja.asyncio.endpoint.AsyncioEndpoint attribute)

 	(lahja.base.EndpointAPI attribute)

 	(lahja.trio.endpoint.TrioEndpoint attribute)

 	is_server_stopped (lahja.trio.endpoint.TrioEndpoint attribute)

 	is_serving (lahja.asyncio.endpoint.AsyncioEndpoint attribute)

 	(lahja.base.EndpointAPI attribute)

 	(lahja.trio.endpoint.TrioEndpoint attribute)

 	is_stopped (lahja.trio.endpoint.TrioEndpoint attribute)

L

 	
 	lahja.exceptions (module)

 	LahjaError

 	
 	LifecycleError

 	logger (lahja.base.BaseEndpoint attribute)

 	(lahja.trio.endpoint.TrioEndpoint attribute)

N

 	
 	name (lahja.base.EndpointAPI attribute)

 	(lahja.common.ConnectionConfig attribute)

P

 	
 	path (lahja.common.ConnectionConfig attribute)

R

 	
 	RemoteDisconnected

 	request() (in module lahja.tools.drivers.actions)

 	(lahja.asyncio.endpoint.AsyncioEndpoint method)

 	(lahja.base.EndpointAPI method)

 	(lahja.trio.endpoint.TrioEndpoint method)

 	run() (lahja.asyncio.endpoint.AsyncioEndpoint method)

 	(lahja.base.EndpointAPI method)

 	(lahja.trio.endpoint.TrioEndpoint method)

 	
 	run_drivers() (lahja.tools.engine.EngineAPI method)

 	run_endpoint() (in module lahja.tools.drivers.initializers)

 	run_with_timeout() (lahja.tools.engine.EngineAPI method)

 	RunnerAPI (class in lahja.tools.runner)

S

 	
 	serve() (lahja.asyncio.endpoint.AsyncioEndpoint class method)

 	(lahja.base.EndpointAPI class method)

 	(lahja.trio.endpoint.TrioEndpoint class method)

 	serve_endpoint() (in module lahja.tools.drivers.initializers)

 	serve_request() (in module lahja.tools.drivers.actions)

 	sleep() (lahja.tools.engine.EngineAPI method)

 	
 	stream() (lahja.asyncio.endpoint.AsyncioEndpoint method)

 	(lahja.base.EndpointAPI method)

 	(lahja.trio.endpoint.TrioEndpoint method)

 	subscribe() (lahja.asyncio.endpoint.AsyncioEndpoint method)

 	(lahja.base.EndpointAPI method)

 	(lahja.trio.endpoint.TrioEndpoint method)

 	Subscription (class in lahja.common)

T

 	
 	throws() (in module lahja.tools.drivers.actions)

 	TResponse (lahja.trio.endpoint.TrioEndpoint attribute)

 	
 	TrioEndpoint (class in lahja.trio.endpoint)

 	TStreamEvent (lahja.trio.endpoint.TrioEndpoint attribute)

 	TSubscribeEvent (lahja.trio.endpoint.TrioEndpoint attribute)

U

 	
 	UnexpectedResponse

 	
 	unsubscribe() (lahja.common.Subscription method)

W

 	
 	wait_any_then_broadcast() (in module lahja.tools.drivers.actions)

 	wait_for() (in module lahja.tools.drivers.actions)

 	(lahja.base.BaseEndpoint method)

 	(lahja.base.EndpointAPI method)

 	wait_started() (lahja.trio.endpoint.TrioEndpoint method)

 	wait_stopped() (lahja.trio.endpoint.TrioEndpoint method)

 	wait_until_all_endpoints_subscribed_to() (lahja.base.BaseEndpoint method)

 	(lahja.base.EndpointAPI method)

 	wait_until_any_endpoint_subscribed_to() (in module lahja.tools.drivers.actions)

 	(lahja.base.BaseEndpoint method)

 	(lahja.base.EndpointAPI method)

 	
 	wait_until_connected_to() (in module lahja.tools.drivers.actions)

 	(lahja.base.BaseEndpoint method)

 	(lahja.base.EndpointAPI method)

 	wait_until_connections_change() (lahja.base.BaseEndpoint method)

 	(lahja.base.EndpointAPI method)

 	wait_until_endpoint_subscribed_to() (lahja.base.BaseEndpoint method)

 	(lahja.base.EndpointAPI method)

 	wait_until_endpoint_subscriptions_change() (lahja.base.BaseEndpoint method)

 	(lahja.base.EndpointAPI method)

 Optional: Often, the best way to guarantee a clean Python 3 environment is with
virtualenv [https://virtualenv.pypa.io/en/stable/]. If we don’t have virtualenv installed
already, we first need to install it via pip.

pip install virtualenv

Then, we can initialize a new virtual environment venv, like:

virtualenv -p python3 venv

This creates a new directory venv where packages are installed isolated from any other global
packages.

To activate the virtual directory we have to source it

. venv/bin/activate

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Introduction

 		
 Introduction

 		
 Lahja

 		
 Goals

 		
 Further reading

 		
 Quickstart

 		
 Install the library

 		
 Import Endpoint and BaseEvent

 		
 Setup application specific events

 		
 Setup first process to receive and broadcast events

 		
 Setup second process to receive and broadcast events

 		
 Start both processes

 		
 Running the examples

 		
 Example: Chatter between two processes

 		
 Example: Request API

 		
 API

 		
 Endpoint

 		
 Base Endpoint API

 		
 AsyncioEndpoint

 		
 TrioEndpoint

 		
 Common

 		
 ConnectionConfig

 		
 BaseEvent

 		
 BaseRequestResponseEvent

 		
 BroadcastConfig

 		
 Subscription

 		
 Exceptions

 		
 Testing

 		
 Runner

 		
 Engines

 		
 Drivers

 		
 Release Notes

 		
 Lahja 0.15.2 (2019-12-04)

 		
 Bugfixes

 		
 Lahja 0.15.1 (2019-12-03)

 		
 Bugfixes

 		
 Lahja 0.15.0 (2019-11-21)

 		
 Lahja 0.14.6 (2019-11-19)

 		
 Features

 		
 Misc

 		
 Lahja 0.14.5 (2019-09-10)

 		
 Features

 		
 Bugfixes

 		
 Lahja 0.14.4 (2019-09-05)

 		
 Lahja 0.14.3 (2019-08-28)

 		
 Improved Documentation

 		
 Lahja 0.14.2 (2019-08-28)

 		
 Bugfixes

 		
 Lahja 0.14.1 (2019-08-13)

 		
 Features

 		
 Bugfixes

 		
 Improved Documentation

 		
 Deprecations and Removals

 		
 v0.14.0

 		
 v0.13.0

 		
 v0.12.0

 		
 v0.11.2

 		
 v0.11.1

 		
 v0.11.0

 		
 v0.10.2

 		
 v0.10.1

 		
 v0.10.0

 		
 v0.9.0

 		
 Contributing

 		
 Setting the stage

 		
 Running the tests

 		
 Code Style

 		
 Type Hints

 		
 Documentation

 		
 Pull Requests

 		
 Releasing

 		
 How to bumpversion

 		
 Code of Conduct

 		
 Our Pledge

 		
 Our Standards

 		
 Our Responsibilities

 		
 Scope

 		
 Enforcement

 		
 Attribution

_static/up.png

